Geometry
Give the six trigonometric ratios for the followings triangles.

2)

Use $\Delta \mathrm{MNP}$ to name the hypotenuse, opposite side, and adjacent side for each reference angle.
5) $\angle \mathrm{N}$
6) $\angle \mathrm{M}$

Use $\Delta \mathrm{JKH}$ to name the hypotenuse, opposite side, and
adjacent side for each reference angle.
7) $\angle K$
8) $\angle \mathrm{H}$

Use $\Delta \mathrm{QRS}$ to find each trigonometric ratio. Then use a calculator to approximate each ratio to four decimal places.
9) $\frac{\text { Opposite } \angle S}{\text { Hyposteruse }}=$
10) $\frac{\text { Acjacent } \angle S}{\text { Opposite } \angle S}$
11) $\frac{\text { Hypotenuse }}{\text { Acjacent } \angle Q}=$
12) $\frac{\text { Opposite } \angle Q}{\text { Acjacent } \angle Q}=$

In the figure at the right the ratio $\frac{\text { Opposite } \angle P}{\text { Hypotenuse }}=\frac{5}{13}$.
15) If $P Q=65$, find lengths $P R$ and $Q R$.
16) If $\mathrm{PR}=72$, find lengths PQ and QR .

